
1Zilogic Systems

Embedded Programming
with the GNU Toolchain

Vijay Kumar B.
vijaykumar@zilogic.com

mailto:vijaykumar@zilogic.com

2Zilogic Systems

What?

C Application

OS

Hardware

C Application

Hardware

Conventional C Programs Our Case

3Zilogic Systems

Why?

● Embedded Firmware Development
● RTOS development – eCOS, RTEMS, ...
● Bootloader development – U-Boot, ...
● Programming DSPs
● Testing Microprocessors cores

implemented in ASICs / FPGAs

4Zilogic Systems

How?

● 3 Example Scenarios
● Hello Embedded World – Add 2 numbers

in registers in assembly
● Add 2 numbers from memory in assembly
● Add 2 numbers from memory in C

5Zilogic Systems

Scenario I - Overview

● Cortex-M3 Processor
● Writing Assembly Programs
● Emulating Cortex-M3 with Qemu

6Zilogic Systems

ARMv7

● Latest revision of ARM architecture –
ARMv7

● Cortex Processor – ARMv7
implementation

● Profiles
– A Profile – GPOS and applications
– R Profile – optimized for realtime systems
– M Profile – optimized for low cost embedded

systems

7Zilogic Systems

Cortex-M3 Features

● Thumb-2 Instruction Set
● Bit Banding
● Integrated Peripherals

– NVIC
– Memory Protection Unit

(MPU)
– Debug Peripherals

8Zilogic Systems

CM3 SoCs

● SoC vendors license CM3 from ARM
● SoC vendors use it as building block
● Licensees

– TI – Stellaris processors
– Atmel – ATSAM3U series
– STMicroelectronics – STM32
– NXP - LPC1700

9Zilogic Systems

LM3S811

● Cortex-M3 core
● Memory

– 64KB Flash
– 8KB RAM

● Peripherals
– 10 bit ADCs
– I2C, SPI, UARTs, PWM
– 32 GPIOs

10Zilogic Systems

Registers

● Load Store
Architecture

● Data processing
instructions –
register operands

● Large register file –
16 32-bit registers

11Zilogic Systems

Registers (Contd.)

R0

R2

R3

R1

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

PSR

CONTROL

PRIMASK

FAULTMASK

BASEPRI

● R0 – R12
– General Purpose

● R13
– Stack Pointer

● R14
– Link Register

● R15
– Program Counter

12Zilogic Systems

Memory Map

● CM3 has a fixed
memory map

● Easy to port
software

● 4GB Address Space
● LM3S811

– 64KB Flash
– 8KB SRAM

Flash

SRAM

0x0000_0000

0x2000_0000

Peripherals

0x4000_0000

13Zilogic Systems

Reset

● SP from address 0x0
● PC from address 0x4
● Address is mapped

to Flash

Initial SP

Reset Vec.

0x0000

0x0004

14Zilogic Systems

Assembly

● label: convenient way to refer to the
memory location

● instruction: ARM instruction or assembler
directive

● comment: starts with @

 label: instruction @comment

15Zilogic Systems

Hello Embedded World

 .thumb
 .syntax unified
sp: .word 0x100
reset: .word start+1

start:
 mov r0, #5
 mov r1, #4
 add r2, r1, r0

stop: b stop

16Zilogic Systems

Toolchain

Assembler (as)

Linker (ld)

Assembler Source (.s)

Object File (.o)

Executable (.elf)

17Zilogic Systems

Toolchain (Contd.)

 $ arm-none-eabi-as -mcpu=cortex-m3 -o add.o add.s

● Cross toolchain prefix - arm-none-eabi-
● -mcpu=cortex-m3 Specifies the CPU
● -o Specifies the output file

18Zilogic Systems

Toolchain (Contd.)

 $ arm-none-eabi-ld -Ttext=0x0 -o add.elf add.o

● Cross toolchain prefix - arm-none-eabi-
● -Ttext=0x0 Addresses should be

assigned to instructions starting from 0.
● -o Specifies the output file

19Zilogic Systems

Toolchain (Contd.)

 $ arm-none-eabi-nm add.elf
 ...
 00000004 t reset
 00000000 t sp
 00000008 t start
 00000014 t stop

● List symbols from object file
● Verify initial SP and reset vector are

located at required address

20Zilogic Systems

Toolchain (Contd.)

● ELF file format contains meta information
for OS

● Binary format contains consecutive bytes
starting from an address

● Convenient for flashing tools

21Zilogic Systems

Toolchain (Contd.)

 $ arm-none-eabi-objcopy -O binary add.elf add.bin

● objcopy – converts between different
executable file formats

● -O specifies that output file format

22Zilogic Systems

Qemu

● Open source machine emulator - the
processor and the peripherals

● Architectures – i386, ARM, MIPS, SPARC ...
● Used by various open source projects

– OLPC
– OpenMoko
– Linux Kernel Testing

23Zilogic Systems

Emulating in Qemu

 $ qemu-system-arm -M lm3s811evb -kernel add.bin

● -M lm3s811evb specifies the machine to
be emulated

● -kernel specifies data to be loaded in
Flash from address 0x0

● monitor interface – control and status
● can be used to view the registers

24Zilogic Systems

Review

● Writing simple assembly programs
● Building and linking them using GNU

Toolchain
● Emulating Cortex-M3 processor using

Qemu

25Zilogic Systems

Scenario II - Overview

● Role of Linker
● Linker Scripts
● Placing data in RAM

26Zilogic Systems

Linker

assemblera.s a.o

assemblerb.s b.o

assemblerc.s c.o

linker abc.o

● In multi-file programs – combines multiple
object files to form executable

27Zilogic Systems

Linker (Contd.)

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

28Zilogic Systems

Linker (Contd.)

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

29Zilogic Systems

Symbol Resolution

● Functions are
defined in one file

● Referenced in
another file

● References are
marked unresolved
by the compiler

● Linker patches the
references

30Zilogic Systems

Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

31Zilogic Systems

Relocation

● Code generated
assuming it starts
from address X

● Code should start
from address Y

● Change addresses
assigned to labels

● Patch label
references

32Zilogic Systems

Sections

● Placing related bytes at a particular
location.

● Example:
– instructions in Flash
– data in RAM

● Related bytes are grouped together using
sections

● Placement of sections can be specified

33Zilogic Systems

Sections (Contd.)

● Most programs have atleast two sections,
.text and .data

● Data or instructions can be placed in a
section using directives

● Directives
– .text
– .data
– .section

34Zilogic Systems

Sections (Contd.)

● Source – sections can be interleaved
● Bytes of a section – contiguous addresses

35Zilogic Systems

Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

36Zilogic Systems

Section Merging

● Linker merges sections in the input files
into sections in the output file

● Default merging – sections of same name
● Symbols get new addresses, and

references are patched
● Section merging can be controlled by

linker script files

37Zilogic Systems

Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

38Zilogic Systems

Section Placement

● Bytes in each section is given addresses
starting from 0x0

● Labels get addresses relative to the start
of section

● Linker places section at a particular
address

● Labels get new address, label references
are patched

strlen

42Zilogic Systems

Linker Script

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

Can be controlled
through Linker scripts.

43Zilogic Systems

Simple Linker Script

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 abc.o (.text);
 def.o (.text);
 } > FLASH
}

abc.o (.text)

def.o (.text)

0x0

0xFFFF

44Zilogic Systems

Simple Linker Script

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 abc.o (.text);
 def.o (.text);
 } > FLASH
}

Section Merging

45Zilogic Systems

Simple Linker Script

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 abc.o (.text);
 def.o (.text);
 } > FLASH
}

Section Placement

46Zilogic Systems

Making it Generic

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 * (.text);
 } > FLASH
}

Wildcards to represent .text
form all input files

47Zilogic Systems

Multiple Sections

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 * (.text);
 } > FLASH

 .rodata : {
 * (.rodata);
 } > FLASH
}

Dealing with
mutiple sections

.text

.rodata

0x0

0xFFFF

48Zilogic Systems

Data in RAM

● Add two numbers from memory
● Assembly source
● Linker Script

49Zilogic Systems

RAM is Volatile!

● RAM is volatile
● Data cannot be made available in RAM at

power-up
● All code and data should be in Flash at

power-up
● Startup code – copies data from Flash to

RAM

50Zilogic Systems

RAM is Volatile! (Contd.)

● .data section should be present in Flash at
power-up

● Section has two addresses
– load address (aka LMA)
– run-time address (aka VMA)

● So far only run-time address – actual
address assigned to labels

● Load address defaults to run-time address

51Zilogic Systems

Linker Script Revisited

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 * (.text);
 } > FLASH

 .data : {
 * (.data);
 } > SRAM
}

.text
0x00000000

0x0000FFFF

Flash

0x20000000

0x20001FFF

SRAM
.data

52Zilogic Systems

Linker Script Revisited

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 * (.text);
 } > FLASH

 .data : {
 * (.data);
 } > SRAM AT> FLASH
}

.text
0x00000000

0x0000FFFF

Flash

0x20000000

0x20001FFF

SRAM
.data

.data

53Zilogic Systems

Linker Script Revisited

MEMORY {
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
 .text : {
 * (.text);
 etext = .;
 } > FLASH

 .data : {
 sdata = .;
 * (.data);
 edata = .;
 } > SRAM AT> FLASH
}

.text

.data

.data
etext

sdata

edata

54Zilogic Systems

Data in RAM

● Copy .data from Flash to RAM
start:
 ldr r0, =sdata @ Load the address of sdata
 ldr r1, =edata @ Load the address of edata
 ldr r2, =etext @ Load the address of etext

copy: ldrb r3, [r2] @ Load the value from Flash
 strb r3, [r0] @ Store the value in RAM

 add r2, r2, #1 @ Increment Flash pointer
 add r0, r0, #1 @ Increment RAM pointer

 cmp r0, r1 @ Check if end of data
 bne copy @ Branch if not end of data

55Zilogic Systems

Review

● Linker Script can control
– Section Merging
– Section Placement

● .data placed in RAM, .text in Flash
● RAM is volatile
● at load time .data is in Flash
● at startup .data is copied from Flash to

RAM

56Zilogic Systems

Scenario III - Overview

● C Environment Requirements
● C Sections
● C Source Code
● Linker Script

57Zilogic Systems

Doing it in C

● Environment has to
be setup
– Stack pointer
– Non-initalized

global variables,
initialized to zero

– Initialized global
variables must
have their initial
value

58Zilogic Systems

C Sections

● Sections created by GCC
– .text – for functions
– .data – for initialized global data
– .bss – for uninitialized global data
– .rodata – for strings and global variables

defined as const

59Zilogic Systems

Credits

● Cash Register – Nikola Smolenski

● Cerebral Cortex - www.toosmarttostart.samhsa.gov

● Reset Button – flattop341
http://www.flickr.com/photos/flattop341/224175619/

● Church Relocation – Fletcher6
http://commons.wikimedia.org/wiki/File:Salem_Church_Relocation.JPG

● Rope Image - Markus BÃ¤rlocher
http://commons.wikimedia.org/wiki/File:Schotstek_links.jpg

http://www.toosmarttostart.samhsa.gov/
http://www.flickr.com/photos/flattop341/224175619/
http://commons.wikimedia.org/wiki/File:Salem_Church_Relocation.JPG
http://commons.wikimedia.org/wiki/File:Schotstek_links.jpg

60Zilogic Systems

Further Reading

● Embedded Programming using the GNU
Toolchain -
http://www.bravegnu.org/gnu-eprog/

● GNU Linker Manual
● GNU Assembler Manual

http://www.bravegnu.org/gnu-eprog/

