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What?

C Application

OS

Hardware

C Application

Hardware

Conventional C Programs Our Case
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Why?

● Embedded Firmware Development
● RTOS development – eCOS, RTEMS, ...
● Bootloader development – U-Boot, ...
● Programming DSPs
● Testing Microprocessors cores 

implemented in ASICs / FPGAs
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How?

● 3 Example Scenarios
● Hello Embedded World – Add 2 numbers 

in registers in assembly
● Add 2 numbers from memory in assembly
● Add 2 numbers from memory in C
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Scenario I - Overview

● Cortex-M3 Processor
● Writing Assembly Programs
● Emulating Cortex-M3 with Qemu
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ARMv7

● Latest revision of ARM architecture – 
ARMv7

● Cortex Processor – ARMv7 
implementation

● Profiles
– A Profile – GPOS and applications
– R Profile – optimized for realtime systems
– M Profile – optimized for low cost embedded 

systems
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Cortex-M3 Features

● Thumb-2 Instruction Set
● Bit Banding
● Integrated Peripherals

– NVIC
– Memory Protection Unit 

(MPU)
– Debug Peripherals
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CM3 SoCs

● SoC vendors license CM3 from ARM
● SoC vendors use it as building block
● Licensees

– TI – Stellaris processors
– Atmel – ATSAM3U series
– STMicroelectronics – STM32
– NXP - LPC1700
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LM3S811

● Cortex-M3 core
● Memory

– 64KB Flash
– 8KB RAM

● Peripherals
– 10 bit ADCs
– I2C, SPI, UARTs, PWM
– 32 GPIOs
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Registers

● Load Store 
Architecture

● Data processing 
instructions – 
register operands

● Large register file – 
16 32-bit registers
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Registers (Contd.)

R0

R2

R3

R1

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

PSR

CONTROL

PRIMASK

FAULTMASK

BASEPRI

● R0 – R12
–  General Purpose

● R13
– Stack Pointer

● R14
– Link Register

● R15
– Program Counter
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Memory Map

● CM3 has a fixed 
memory map

● Easy to port 
software

● 4GB Address Space
● LM3S811

– 64KB Flash
– 8KB SRAM

Flash

SRAM

0x0000_0000

0x2000_0000

Peripherals

0x4000_0000
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Reset

● SP from address 0x0
● PC from address 0x4
● Address is mapped 

to Flash

Initial SP

Reset Vec.

0x0000

0x0004
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Assembly

● label: convenient way to refer to the 
memory location

● instruction: ARM instruction or assembler 
directive

● comment: starts with @

 label:  instruction @comment
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Hello Embedded World

        .thumb
        .syntax unified
sp:     .word 0x100
reset:  .word start+1

start:
        mov r0, #5
        mov r1, #4
        add r2, r1, r0

stop:   b   stop
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Toolchain

Assembler (as)

Linker (ld)

Assembler Source (.s) 

Object File (.o) 

Executable (.elf) 
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Toolchain (Contd.)

 $ arm-none-eabi-as -mcpu=cortex-m3 -o add.o add.s

● Cross toolchain prefix - arm-none-eabi- 
● -mcpu=cortex-m3 Specifies the CPU
● -o Specifies the output file
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Toolchain (Contd.)

 $ arm-none-eabi-ld -Ttext=0x0 -o add.elf add.o

● Cross toolchain prefix - arm-none-eabi- 
● -Ttext=0x0 Addresses should be 

assigned to instructions starting from 0.
● -o Specifies the output file
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Toolchain (Contd.)

 $ arm-none-eabi-nm add.elf
 ...
 00000004 t reset
 00000000 t sp
 00000008 t start
 00000014 t stop

● List symbols from object file
● Verify initial SP and reset vector are 

located at required address
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Toolchain (Contd.)

● ELF file format contains meta information 
for OS

● Binary format contains consecutive bytes 
starting from an address

● Convenient for flashing tools
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Toolchain (Contd.)

 $ arm-none-eabi-objcopy -O binary add.elf add.bin

● objcopy – converts between different 
executable file formats

● -O specifies that output file format
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Qemu

● Open source machine emulator - the 
processor and the peripherals

● Architectures – i386, ARM, MIPS, SPARC ...
● Used by various open source projects

– OLPC
– OpenMoko
– Linux Kernel Testing
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Emulating in Qemu

 $ qemu-system-arm -M lm3s811evb -kernel add.bin

● -M lm3s811evb specifies the machine to 
be emulated

● -kernel specifies data to be loaded in 
Flash from address 0x0

● monitor interface – control and status
● can be used to view the registers
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Review

● Writing simple assembly programs
● Building and linking them using GNU 

Toolchain
● Emulating Cortex-M3 processor using 

Qemu
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Scenario II - Overview

● Role of Linker
● Linker Scripts
● Placing data in RAM
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Linker

assemblera.s a.o

assemblerb.s b.o

assemblerc.s c.o

linker abc.o

● In multi-file programs – combines multiple 
object files to form executable
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Linker (Contd.)

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement
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Linker (Contd.)

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement
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Symbol Resolution

● Functions are 
defined in one file

● Referenced in 
another file

● References are 
marked unresolved 
by the compiler

● Linker patches the 
references
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Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement
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Relocation

● Code generated 
assuming it starts 
from address X

● Code should start 
from address Y

● Change addresses 
assigned to labels

● Patch label 
references
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Sections

● Placing related bytes at a particular 
location.

● Example:
– instructions in Flash
– data in RAM

● Related bytes are grouped together using 
sections

● Placement of sections can be specified
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Sections (Contd.)

● Most programs have atleast two sections, 
.text and .data

● Data or instructions can be placed in a 
section using directives

● Directives
– .text
– .data
– .section 
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Sections (Contd.)

● Source – sections can be interleaved
● Bytes of a section – contiguous addresses
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Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement
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Section Merging

● Linker merges sections in the input files 
into sections in the output file

● Default merging – sections of same name
● Symbols get new addresses, and 

references are patched
● Section merging can be controlled by 

linker script files



37Zilogic Systems

Linker

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement
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Section Placement

● Bytes in each section is given addresses 
starting from 0x0

● Labels get addresses relative to the start 
of section

● Linker places section at a particular 
address

● Labels get new address, label references 
are patched





strlen
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Linker Script

Linker

Symbol
Resolution Relocation

Section
Merging

Section
Placement

Can be controlled
through Linker scripts.
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Simple Linker Script

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        abc.o (.text);
        def.o (.text);
    } > FLASH
}

abc.o (.text)

def.o (.text)

0x0

0xFFFF
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Simple Linker Script

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        abc.o (.text);
        def.o (.text);
    } > FLASH
}

Section Merging
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Simple Linker Script

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        abc.o (.text);
        def.o (.text);
    } > FLASH
}

Section Placement
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Making it Generic

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        * (.text);
    } > FLASH
}

Wildcards to represent .text
form all input files
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Multiple Sections

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        * (.text);
    } > FLASH

    .rodata : {
        * (.rodata);
    } > FLASH
}

Dealing with 
mutiple sections

.text

.rodata

0x0

0xFFFF
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Data in RAM

● Add two numbers from memory
● Assembly source
● Linker Script
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RAM is Volatile!

● RAM is volatile
● Data cannot be made available in RAM at 

power-up
● All code and data should be in Flash at 

power-up
● Startup code – copies data from Flash to 

RAM



50Zilogic Systems

RAM is Volatile! (Contd.)

● .data section should be present in Flash at 
power-up

● Section has two addresses 
– load address (aka LMA)
– run-time address (aka VMA)

● So far only run-time address – actual 
address assigned to labels

● Load address defaults to run-time address
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Linker Script Revisited

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        * (.text);
    } > FLASH

    .data : {
        * (.data);
    } > SRAM
}

.text
0x00000000

0x0000FFFF

Flash

0x20000000

0x20001FFF

SRAM
.data
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Linker Script Revisited

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        * (.text);
    } > FLASH

    .data : {
        * (.data);
    } > SRAM AT> FLASH
}

.text
0x00000000

0x0000FFFF

Flash

0x20000000

0x20001FFF

SRAM
.data

.data
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Linker Script Revisited

MEMORY {
    FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x10000
    SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x2000
}

SECTIONS {
    .text : {
        * (.text);
        etext = .;
    } > FLASH

    .data : {
        sdata = .;
        * (.data);
        edata = .;
    } > SRAM AT> FLASH
}

.text

.data

.data
etext

sdata

edata
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Data in RAM

● Copy .data from Flash to RAM
start:
        ldr r0, =sdata          @ Load the address of sdata
        ldr r1, =edata          @ Load the address of edata
        ldr r2, =etext          @ Load the address of etext

copy:   ldrb r3, [r2]           @ Load the value from Flash
        strb r3, [r0]           @ Store the value in RAM

        add  r2, r2, #1         @ Increment Flash pointer
        add  r0, r0, #1         @ Increment RAM pointer

        cmp  r0, r1             @ Check if end of data
        bne  copy               @ Branch if not end of data



55Zilogic Systems

Review

● Linker Script can control
– Section Merging
– Section Placement

● .data placed in RAM, .text in Flash
● RAM is volatile
● at load time .data is in Flash
● at startup .data is copied from Flash to 

RAM
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Scenario III - Overview

● C Environment Requirements
● C Sections
● C Source Code
● Linker Script
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Doing it in C

● Environment has to 
be setup
– Stack pointer
– Non-initalized 

global variables, 
initialized to zero

– Initialized global 
variables must 
have their initial 
value
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C Sections

● Sections created by GCC
– .text – for functions
– .data – for initialized global data
– .bss – for uninitialized global data
– .rodata – for strings and global variables 

defined as const
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Credits

● Cash Register – Nikola Smolenski

● Cerebral Cortex - www.toosmarttostart.samhsa.gov

● Reset Button – flattop341 
http://www.flickr.com/photos/flattop341/224175619/

● Church Relocation – Fletcher6 
http://commons.wikimedia.org/wiki/File:Salem_Church_Relocation.JPG

● Rope Image - Markus BÃ¤rlocher 
http://commons.wikimedia.org/wiki/File:Schotstek_links.jpg

http://www.toosmarttostart.samhsa.gov/
http://www.flickr.com/photos/flattop341/224175619/
http://commons.wikimedia.org/wiki/File:Salem_Church_Relocation.JPG
http://commons.wikimedia.org/wiki/File:Schotstek_links.jpg
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Further Reading

● Embedded Programming using the GNU 
Toolchain - 
http://www.bravegnu.org/gnu-eprog/

● GNU Linker Manual
● GNU Assembler Manual

http://www.bravegnu.org/gnu-eprog/

